Unloaded rat Achilles tendons continue to grow, but lose viscoelasticity.

نویسندگان

  • Pernilla Eliasson
  • Anna Fahlgren
  • Björn Pasternak
  • Per Aspenberg
چکیده

Tendons can function as springs and thereby preserve energy during cyclic loading. They might also have damping properties, which, hypothetically, could reduce risk of microinjuries due to fatigue at sites of local stress concentration within the tendon. At mechanical testing, damping will appear as hysteresis. How is damping influenced by training or disuse? Does training decrease hysteresis, thereby making the tendon a better spring, or increase hysteresis and thus improve damping? Seventy-eight female 10-wk-old Sprague-Dawley rats were randomized to three groups. Two groups had botulinum toxin injected into the calf muscles to unload the left Achilles tendon through muscle paralysis. One of these groups was given doxycycline, as a systemic matrix metalloproteinase inhibitor. The third group served as loaded controls. The Achilles tendons were harvested after 1 or 6 wk for biomechanical testing. An increase with time was seen in tendon dry weight, wet weight, water content, transverse area, length, stiffness, force at failure, and energy uptake in all three groups (P < 0.001 for each parameter). Disuse had no effect on these parameters. Creep was decreased with time in all groups. The only significant effect of disuse was on hysteresis (P = 0.004) and creep (P = 0.007), which both decreased with disuse compared with control, and on modulus, which was increased (P = 0.008). Normalized glycosaminoglycan content was unaffected by time and disuse. No effect of doxycycline was observed. The results suggest that in growing animals, the tendons continue to grow regardless of mechanical loading history, whereas maintenance of damping properties requires mechanical stimulation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synergy of tendon stem cells and platelet-rich plasma in tendon healing.

Injured rat Achilles tendons were treated with botulism toxin to create a mechanically unloaded condition (unloaded) or left untreated (loaded), and then treated with phosphate-buffered saline (PBS), platelet-rich plasma (PRP), tendon stem cells (TSCs), or a combination (TSCs + PRP). mRNA and protein expression of collagen I, collagen III, tenascin C, and Smad 8 were determined by real time PCR...

متن کامل

The Healing Effects of Aquatic Activities and Allogenic Injection of Platelet-Rich Plasma (PRP) on Injuries of Achilles Tendon in Experimental Rat

BACKGROUND Clinical tendon injuries represent serious and unresolved issues of the case on how the injured tendons could be improved based on natural structure and mechanical strength. The aim of this studies the effect of aquatic activities and alogenic platelet rich plasma (PRP) injection in healing Achilles tendons of rats. METHODS Forty rats were randomly divided into 5 equal groups. Se...

متن کامل

Rat Achilles tendon healing: mechanical loading and gene expression.

Injured tendons require mechanical tension for optimal healing, but it is unclear which genes are upregulated and responsible for this effect. We unloaded one Achilles tendon in rats by Botox injections in the calf muscles. The tendon was then transected and left to heal. We studied mechanical properties of the tendon calluses, as well as mRNA expression, and compared them with loaded controls....

متن کامل

Microtrauma stimulates rat Achilles tendon healing via an early gene expression pattern similar to mechanical loading.

Mechanical loading increases the strength of healing tendons, but also induces small localized bleedings. Therefore, it is unclear if increased strength after loading is a response to mechanotransduction or microtrauma. We have previously found only five genes to be up-regulated 15 min after a single loading episode, of them four were transcription factors. These genes are followed by hundreds ...

متن کامل

Growth hormone does not stimulate early healing in rat tendons.

Growth Hormone stimulates bone growth and fracture repair. It acts mainly by increasing the systemic levels of IGF-1. Local treatment with IGF-1 appears to stimulate tendon healing. We therefore hypothesized that systemic treatment with Growth Hormone would also stimulate tendon healing. Rat Achilles tendons were transected and left to heal. 4 groups were studied. Intramuscular injections of bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 103 2  شماره 

صفحات  -

تاریخ انتشار 2007